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Project overview 
 
As our planet heats up due to climate change, outbreaks of zoonotic diseases are 
increasing and expanding to new parts of the world, in particular, Europe. IDAlert aims to 
tackle the emergence and transmission of zoonotic pathogens by developing novel 
indicators, innovative early warning systems, and decision-support tools for policy-makers, 
as well as evaluating adaptation and mitigation strategies to build a Europe that is more 
resilient to emerging health threats. 
 
IDAlert is a five-year Research and Innovation Action (RIA) project coordinated by Umeå 
University (Sweden). The consortium comprises 19 organisations from Sweden, Germany, 
France, Spain, Greece, The Netherlands, Italy, UK, and Bangladesh, with world leading 
experts in a wide range of disciplines including zoonoses, infectious disease epidemiology, 
social sciences, artificial intelligence, environmental economics, and environmental and 
climate sciences. 
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Executive Summary 
Europe has warmed at twice the global average rate over the past seventy years, with 
serious implications for human health through extreme weather events and gradual climatic 
changes. Europe has seen an increased risk for climate-sensitive infectious diseases 
(CSID), such as dengue, malaria, Lyme, and leishmaniasis, driven by fluctuations in climatic 
and environmental patterns. Climatic factors such as temperature, precipitation, and 
humidity influence vector distribution and pathogen survival rates. Thus, monitoring 
conditions for disease transmission is key for reducing the burden of CSIDs. Work Package 
three (WP3) aims to develop an early warning tool to protect Europe from CSID threats by 
designing a seasonal risk indicator platform. This platform will integrate climate predictions 
with CSID indicators to facilitate timely decision-making and proactive action. 

This report showcases the adaptation of two indicators initially developed in the context of 
the Lancet Countdown in Europe: the suitability for malaria transmission and Ixodes ricinus 
questing activity indicators. The methodology presented in this report integrated seasonal 
climate predictions into the CSID indicator models to predict climatic suitability for disease 
transmission. This involved calibrating climate forecasts before the calculation of the 
indicators and assessing the skill, using the Continuous Rank Probability Skill Score 
(CRPSS) for climate variables as well as the Brier Skill Score (BSS) for indicators.

CRPSS values indicated moderate reliability of climate forecasts in southern Europe with 
decreasing skill over time. Suitability for malaria transmission and Ixodes ricinus activity, 
however, showed significant spatial and temporal variations, with higher predictive skill in 
certain regions. The developed framework successfully integrated climate predictions with 
CSID indicators, demonstrating enhanced predictive skill.

This report introduces an operational framework for integrating climate predictions with CSID 
indicators, showcasing its practical application and predictive skill. Despite challenges in 
predicting climate at seasonal timescales in parts of Europe, the framework effectively 
demonstrates the feasibility of monthly CSID predictions at the monthly timescale. Future 
work will focus on refining models, expanding the suite of indicators from a One Health 
perspective, and enhancing visualisation tools.
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1. Introduction

Europe has warmed at twice the rate of the global average in the past seven decades (van 
Daalen et al., 2024). Growing evidence shows that climate change has an adverse impact 
on human health through extreme weather events and gradual climatic changes, affecting 
physical and mental well-being, healthcare access, and disease transmission.

In this context, climate-sensitive infectious diseases (CSIDs) are an emerging public health 
threat in Europe owing to their notable upsurge in recent decades to changes in the vector 
distribution (van Daalen et al., 2024). Climate services for health, using data from in situ 
observations, satellite-based remote sensing,  climate reanalysis datasets, and climate 
predictions have been successfully implemented worldwide for understanding drivers of 
disease and foreseeing their dynamics (Di Napoli et al., 2023). Predicting when and where 
conditions will be suitable for disease transmission is crucial for timely decision-making and 
proactive action.

Work Package three (WP3) aims to create an early warning tool to protect Europe from 
current and emerging zoonotic disease threats. This involves designing a seasonal risk 
indicator platform that integrates reanalysis and sub-seasonal to seasonal (S2S) climate 
predictions with validated indicators. Specific objectives include adapting CSID indicators for 
S2S decision-making, evaluating S2S forecasts to identify regions in Europe for early action 
protocols, implementing a real-time validation platform, and downscaling and calibrating 
seasonal disease risk indicators for specific countries.

This report showcases the development of two case study indicators of transmission 
suitability for CSIDs, as a proof of concept of seamlessly linking seasonal forecasts to CSID 
indicators: suitability for malaria transmission and suitability for Ixodes ricinus activity.

1.1. Climate sensitive infectious diseases (CSIDs)
Climatic factors such as temperature, precipitation patterns, and humidity, can directly affect 
the distribution and abundance of vectors or the survival rate of pathogens (Romanello et al, 
2023; van Daalen et al, 2024). Malaria is widely acknowledged as a CSID because both the 
vector, Anopheles mosquitoes, and the Plasmodium parasites are influenced by climate 
(Patz et al., 2000). Before the Global Malaria Eradication Program, Europe witnessed the 
endemic circulation of malaria, mainly caused by P. vivax (Boualam et al., 2021). While 
Europe has officially been malaria-free since 1974, sporadic cases still occur among 
travellers and local transmission events have been reported in Germany, the Netherlands, 
Spain, France, Italy, Greece, and the UK (Fischer et al., 2020). Factors linked to 
socio-economic development and increased life expectancy have helped prevent malaria 
reemergence in Europe (Zhao et al., 2016).

Recent analyses revealed that Northern Europe has experienced an increase in the duration 
of the suitable season for Plasmodium vivax transmission by 0.28 months from 1951-1986 to 
1987-2022. Similarly, Western Europe saw an increase of 0.17 months during the same 
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period. Notably, this upward trend in transmission suitability has been particularly 
pronounced in non-urban areas, especially those with moderate social deprivation. Also, 
there has been a notable increase in malaria importation events from endemic regions to 
areas with suitable conditions over the past decade (van Daalen et al, 2024).

Tick-borne diseases (TBDs) are the most prevalent vector-borne illnesses in the Northern 
Hemisphere (Rochlin et al., 2020). In Europe, Lyme disease (LD) stands out as the most 
common TBD, with over 200,000 cases reported annually in Western Europe alone 
(Marques et al., 2021). LD is caused by bacteria belonging to the Borrelia burgdorferii sensu 
lato complex, manifesting clinically from self-limited skin lesions to long-term arthritis (Stanek 
et al., 2012). Following LD, tick-borne encephalitis (TBE) ranks as the second most 
widespread TBD, caused by the Flaviviridae family virus, known as the TBE-virus (Wondim 
et al., 2022). Despite the availability of a vaccine, TBE affects approximately 2.19 individuals 
per 100,000 inhabitants annually in Europe, resulting in meningitis and meningoencephalitis 
in 33% of cases (Wondim et al., 2022).

In recent decades, there has been a notable rise in the frequency of LD and TBE, along with 
an expansion in the distribution of their primary vector: Ixodes ricinus ticks (Jenkins et al. 
2022, Vandekerckhove et al., 2021, Mysterud et al. 2017). Ticks, being ectothermic 
parasites, rely on environmental conditions for feeding, development, and reproduction 
(Randolph et al. 2004). Temperature stands out as a key driver of tick questing activity, the 
process of seeking and attaching to a host. As temperatures dip below a certain threshold, 
ticks enter a diapause stage until conditions become favourable again. Likewise, humidity 
plays a crucial role in tick survival, as they are prone to dehydration while awaiting a host 
(Randolph et al. 2004).

There is evidence of climatic conditions becoming more suitable for malaria transmission 
and for tick species to migrate toward higher altitudes and latitudes (Mysterud et al. 2017, 
van Daalen et al. 2024). Despite a widespread consensus regarding the escalating risk that 
these CSIDs pose to vulnerable populations, there remains a pressing need to monitor 
changes in the length and the start of the transmission season to timely deploy control 
measures.

Threshold-based indicators are simplified models that use the vector climatic requirements 
to consider whether conditions are suitable for acquiring and transmitting the pathogens. The 
suitability for malaria transmission and Ixodes ricinus activity indicators are two examples of 
this class of indicators, currently included in the Lancet Countdown in Europe reports (van 
Daalen et al., 2024). While these indicators were initially designed to report the number of 
months per year with favourable climatic conditions, they are flexible to be adapted into a 
seasonal forecasting platform as case studies for evaluating the process of seamlessly 
integrating seasonal climate forecasts in CSID indicator models.

1.2. Climate predictions
Climate predictions encompass subseasonal forecasts, seasonal forecasts, and decadal 
predictions (Figure 1). Each type provides valuable insights into different temporal ranges in 
which to understand and anticipate climate variability and change (Merryfield et al., 2020). 
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Subseasonal forecasts’ lead time (or the duration between the issue of the forecast and the 
forecasted or target period) is up to five weeks while seasonal forecasts issue predictions 
from two weeks up to eight months and decadal predictions from one to 30 years ahead; 
however, the reliability of the prediction often decreases with the lead time (Vitart et al., 
2017). The three types of climate predictions rely on both the initial conditions of the climate 
system and the slowly varying climate drivers, such as oceanic circulation patterns, sea 
surface temperature, and changes in sea-ice extent and snow cover (Merryfield et al., 2020). 
Subseasonal and seasonal forecasts focus on capturing large-scale climate patterns and 
teleconnections that influence seasonal climate variability, such as El Niño-Southern 
Oscillation (ENSO) and the North Atlantic Oscillation (NAO), and provide information on 
climate patterns, including average temperature and precipitation anomalies (Merryfield et 
al., 2020).

Figure 1. Time scales of different climate datasets.

Over the past few decades, climate predictions have evolved substantially, reaching a level 
of reliability that makes them advantageous for current operational production by several 
meteorological forecast services worldwide (Merryfield et al., 2020). These predictions 
effectively bridge the timescale gap between short-term weather forecasts and long-term 
climate projections (Robertson et al., 2015). Weather forecasts address questions such as 
"what will the weather be like in a specific location on a given day?" and are typically 
accurate only a few days in advance. In contrast, climate projections tackle questions such 
as "how will the components of the climate system evolve under different boundary 
conditions?" and are designed to explore conditional futures based on various sets of 
boundary settings also known as scenarios.

The ability to predict the climatic patterns of the upcoming season is key for decision-making 
across various sectors, such as agriculture, water resource management, energy production 
and public health (Merryfield et al., 2020). By anticipating seasonal climate conditions in 
advance, decision-makers can mitigate risks, optimise operations, and capitalise on 
opportunities, ultimately enhancing resilience and sustainability in the face of climate 
variability and change.

Seasonal climate predictions, while essential for understanding and preparing for future 
weather patterns and climatic extremes, are subject to systematic errors due to various 
factors. These include simplifications made to reduce computational time and meet output 
deadlines, such as approximations in fluid dynamics equations, parameterisation of 
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variables, and using limited spatial and temporal resolution; additionally, imperfect 
knowledge of the initial conditions of the climate system contributes to these errors 
(Doblas-Reyes et al., 2013). To address these shortcomings, climate models are issued as 
an ensemble of several members each of them with a slight perturbation of the initial 
conditions, thus providing an outcome of a range of possibilities (Johnson et al., 2019). 
Moreover, a spectrum of methods exists for correcting systematic errors and adjusting 
forecasts. These encompass bias adjustment methods, which adjust the mean, variance 
and/or higher order elements of the distribution; ensemble recalibration techniques, which 
use the temporal correspondence between past predictions and observations; and statistical 
downscaling techniques that use large-scale predictors to refine the variable of interest 
(Manzanas et al., 2019). All of these post-processing options are commonly referred to as 
calibration techniques or methods and will be denoted as such throughout the remainder of 
this report.

1.3. Towards a seasonal indicator prediction platform
Seasonal climate forecasts and reanalysis products are publicly available as gridded 
products. However, data products need to undergo processing steps to be adapted to the 
spatial and temporal resolution that end users require (Fletcher et al., 2021). This report 
presents the methodology for seamlessly integrating seasonal climate predictions in CSID 
indicator models, to predict climatic suitability for disease transmission in an operational 
framework. Two threshold-based models were selected as CSID indicator case studies: the 
suitability for malaria transmission indicator and the suitability for Ixodes ricinus activity 
indicator. This process is tailored to the CSID indicators, with thresholds derived from the 
existing literature and refined to align with informative outputs. To showcase the 
methodology, forecasts issued in May 2022 were selected as a case study with lead times of 
up to three months. The final product consists of the predicted CSID indicators and their 
associated quality (which depends on the spatial region and target month), as well as the 
quality assessment of the prediction of the underlying climate variables.

2. Methods

2.1. Climate data
Six-hour forecasts and hindcasts for temperature, dew point temperature, and accumulated 
precipitation were obtained from the Copernicus Climate Change Service (Buontempo et al., 
2022), covering the period from January 1981 to December 2022, at a resolution of 
1.0°x1.0°. We used twenty-five ensemble members from the model SEAS-5.1 (Johnson et 
al., 2019) released monthly by European Centre for Medium-Range Weather Forecasts 
(ECMWF) and available at https://doi.org/10.24381/cds.181d637e. While forecasts are 
issued monthly for up to six months, hindcasts were produced once for historic periods. The 
six-hour data were then averaged into monthly values. Monthly relative humidity was derived 
using the August-Roche-Magnus equation from the temperature and dew point temperature 
(Alduchov and Eskridge, 1996).

Hourly reanalysis data were employed for calibrating the predictions. Monthly temperature, 
dew point temperature, and total precipitation from the ERA5-Land (Muñoz-Sabater et al., 
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2021) products were extracted at a 0.1°x 0.1° resolution for the period between January 
1981 and December 2022, available at https://doi.org/10.24381/cds.e2161bac. Similar to the 
forecasts, monthly averages were computed for each variable, and relative humidity was 
derived from temperature and dew point temperature.

Before calibrating the predictions, all variables were averaged to match the target spatial 
resolution for the indicators, NUTS3. Forecasts and reanalyses were extracted for countries 
covered by the European Environment Agency (EEA), plus the United Kingdom. Spatial 
aggregation was done using the R-package exactextractr, which computes averages 
considering the proportion of the grid cells that fall within each polygon. We chose to 
calibrate the spatially aggregated data to avoid introducing noise from downscaling forecasts 
and then upscaling to the desired resolution (Heuvelink, 1998).

2.2. Forecast calibration
To recalibrate predictions of temperature-related variables, the Error-in-Variables Model 
Outputs Statistics (EVMOS) was selected (Vannitsem, 2009). This method is an ensemble 
recalibration technique that applies a variance inflation to ensure the correction of both the 
mean and the variance of the forecasts using the distribution of forecasts and observations 
in the past. This calibration method is available in the CST_calibration function from the 
R-package CSTools (Pérez-Zanón et al., 2022) and it was used with leave-one-out 
evaluation method.

To correct precipitation and humidity predictions, the QUANT method was selected for bias 
correction. This technique uses a non-parametric transformation through the empirical 
quantiles of the cumulative distribution function of observed and predicted values; it is 
ranked as one of the best methods to correct systematic errors in precipitation prediction 
models, conserving the skill of the correction for extreme precipitation (Gudmundsson et al., 
2012). This method is available in the CST_QuantileMapping function within the R-package 
CSTools (Pérez-Zanón et al., 2022).

2.3. Skill assessment
The quality assessment of the forecasts was performed on both the calibrated climate 
variables and the final indicator. This assessment involves evaluating the climate variables 
using the Continuous Rank Probability Skill Score (CRPSS), with climatology serving as the 
reference, and the final indicator with the Brier Skill Score (BSS).

The CRPSS is a relative measure of how well the forecasted probability distribution matches 
the observations from the reanalysis dataset, relative to the reference, in this case the 
climatology. Thus, positive values of CRPSS indicate an added value of the forecasts over 
the reference (Wilks, 2011). The CRPSS was selected for assessment of the calibrated 
climate variables because it evaluates the entire probability distribution of the forecasts, 
which provides a complete picture of the forecast performance regardless of the threshold 
used in the calculation of the indicator.
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The BSS is a metric used to evaluate the accuracy of probabilistic predictions, especially in 
the context of binary (yes/no) outcomes and is therefore chosen to evaluate the final climatic 
suitability indicator (Wilks, 2011). The BSS indicates the added value (positive BSS) of the 
indicator calculated from the forecasts in comparison to the reference indicator, defined as 
the average indicator of the past years.

2.4. CSID indicator case studies
The indicator for malaria transmission suitability is based on the optimal survival and 
proliferation conditions for both the vector and the parasite. Suitable conditions include 
precipitation accumulation exceeding 80 mm, average temperatures between 14.5°C to 
33°C for P. vivax and 18°C to 32°C for P. falciparum, and relative humidity above 60% (Patz 
et al., 2000; Grover-Kopec et al., 2006).

The suitability indicator for Ixodes ricinus questing activity reflects optimal conditions for tick 
feeding behaviour. Favourable climatic conditions for nymph activity were identified as 
temperatures ranging from 10°C to 26°C and relative humidity over 45% (Nolzen et al., 
2022). Data from the Global Biodiversity Information Facility (GBIF) reveals that 82.4% of 
ticks are found in land cover classes such as discontinuous urban areas, moors, heathlands, 
non-irrigated croplands, and both coniferous and broadleaf forests (GBIF 2023).

These indicators were initially developed to calculate the number of months per year with 
favourable climatic conditions, incorporating environmental factors of land cover classes 
(van Daalen et al., 2024). Within WP3, these indicators were further refined to illustrate the 
probability of suitable conditions occurring in any given month, along with the skill of these 
predictions. The probability of suitability was defined by the ratio of ensemble members from 
the forecasting model that met the climatic criteria to the total number of ensemble 
members, multiplied by 100. Moreover, it is possible to evaluate the onset and duration of 
the suitability season for a selected year. To extend the analysis over a 12-month period 
beyond the six-month forecast window, month-specific historical averages can be integrated 
into the timeline (Figure 2).

To demonstrate the application of these indicators, along with calibration and skill 
assessment techniques, forecasts made in May 2022 for up to three months were used as a 
case study. While probabilities were calculated at the NUTS3 level, data on the onset and 
duration of the suitability season was summarised at the country level. This was done to 
highlight regions within the country that showed the highest probability of climatic suitability, 
helping in visualisation.
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Figure 2. Climate data processing pipeline demonstrating the data used for quality assessment and to 
produce the forecasts. Note, beyond 5 months, the climatology (historical averages) per month is 
used to estimate the evolutions of the entire season. 

3. Results

3.1. Skill in climate forecasts
CRPSS values showed that significant portions of Europe, especially in central and northern 
regions, consistently had limited skill in predictions, indicating that forecasts are generally 
not better than climatology (Figure 3). Nonetheless, there is a great level of spatial 
heterogeneity in the skills of each variable. Focussing on temperature, regions in southern 
Europe and parts of Scandinavia exhibited moderate skill, decreasing with longer lead times 
in June and July. Relative humidity forecasts showed a modest skill in southern Europe and 
eastern Europe, with little improvement over the months and extensive areas indicating no 
better performance than the climatology. Total precipitation forecasts also revealed some 
skill in South and South-East Europe, with decreasing performance in June and July, leaving 
most of Europe greyed out. Overall, CRPSS outcomes suggested that climate forecasts 
issued in May 2022 in southern regions of Europe were moderately reliable at a short lead, 
although skills for the remainder of the continent, as well as for longer lead times, decreased 
notably.
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Figure 3. Continuous Ranked Probability Skill Score (CRPSS) for forecasts issued in May 2022. 
CRPSS for monthly forecasts of temperature, dew point temperature, and total precipitation at a 
NUTS3 level, covering a three-month forecast window: May, June, and July. The skill score was 
calculated using reanalysis data as the reference climatology. Positive values indicate superior 
forecasting skill compared to the reference, while negative values, shown in grey, suggest that the 
forecast did not enhance skill sufficiently for the specific district and month.

3.2. Suitability for malaria transmission
Suitability for P. falciparum transmission was initially low in May with probabilities below 40% 
across most regions. However, by June, there was a marked increase in Central and 
Eastern Europe, with probabilities exceeding 50%, and further rising to 60-80% by July. In 
the case of P. vivax, the suitability began at low to moderate levels in May (20-40%) but 
showed a significant rise in June, particularly in Central Europe where probabilities reached 
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up to 80%. This trend continued in July, with widespread high suitability (above 60%), 
particularly in Central and Eastern Europe (Figure 4). 

The BSS revealed spatial and temporal variations in the skills of the climatic suitability for 
malaria transmission indicators across Europe (Figure 5). For P. falciparum, the highest skill 
scores were observed consistently in the Iberian Peninsula and northern Europe. Although 
some regions from southern Europe exhibited negative or non-significant BSS, the results 
showed a fairly good predictive skill also in those regions. Likewise, P. vivax showed higher 
forecast skills in Central and Northern Europe at shorter lags, while declining with longer 
leads in Western Europe. 

Figure 4. Probability of suitability for malaria transmission (May–July 2022) by NUTS3 district. 
The probability was determined by the ratio of ECMWF model SEAS-5.1 ensemble members 
predicting suitable conditions for malaria transmission to the total ensemble members (n=25), 
multiplied by 100 to express the result as a percentage.

12



             

Figure 5. Brier skill score (BSS) for indicator forecasts issued in May 2022. BSS for monthly 
probability of the suitability for malaria transmission indicator at a NUTS3 level, covering a 
three-month forecast window: May, June, and July. The skill score was calculated using the indicator 
computed with historical reanalysis data. Positive values indicate superior forecasting skill compared 
to the reference, while negative values, shown in grey, suggest that the forecast did not enhance skill 
sufficiently for the specific district and month.

3.3. Suitability for Ixodes ricinus questing activity
The climatic suitability forecasts for I. ricinus activity displayed consistently high suitability 
between May and July 2022, with most regions showing probabilities above 80% in the first 
month. By June and July, nearly all of Europe experienced probabilities exceeding 90%, 
indicating uniformly favourable conditions (Figure 6). In contrast, the BSS for I. ricinus 
activity showed a more consistent spatial pattern with general higher skill scores in Central 
and Northern Europe throughout May, June and July. (Figure 7) These results indicate that 
forecasts based on climatic suitability for ticks were reliable across all three months, with 
some exceptions in Southern and Eastern Europe.

Using this indicator to showcase the length of the transmission season predicted for 2022, 
Figure 8 indicates that the suitability for tick activity started in the peninsula in April and 
extended towards the rest of the continent, finishing in September 2022. However, the length 
of the suitable season was not equal across all countries. For example, warmer countries 
such as Spain, Portugal, and Cyprus exhibited the longest suitable season, while the Alps 
had suitable conditions for only two months (Figure A1).
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Figure 6. Probability of suitability for I. ricinus questing activity (May–July 2022) by NUTS3 
district. The probability was determined by the ratio of ECMWF model SEAS-5.1 ensemble members 
predicting suitable conditions for malaria transmission to the total ensemble members (n=25), 
multiplied by 100 to express the result as a percentage.

Figure 7. Brier Skill Score (BSS) for Indicator Forecasts (May 2022). BSS for the monthly 
probability of suitability for I. ricinus questing activity, at a NUTS3 level over a three-month forecast 
period: May, June, and July. The skill score was calculated against the average indicator from the past 
(1981-2021) as the reference. Positive values indicate that the forecast outperforms in skill the 
historical data alone, whereas negative values, shown in grey, indicate insufficient forecasting skill for 
the particular region and month. Additionally, regions where the skill score is not statistically significant 
are greyed out.
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Figure 8. Suitability probability per country for a 12-month period for I. ricinus questing 
activity. To evaluate the onset and duration of the suitability season for a selected year, a 
combination of observed historical data, and six-month window forecasts were employed. To extend 
the analysis over a 12-month period beyond the six-month forecast window, month-specific historical 
averages were integrated into the timeline. Grey squares around the maps indicate data from 
reanalysis, purple squares indicate data from forecasts and orange squares indicate reanalysis data 
averaged over 1981-2021.
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4. Discussion

This report explores the development of an operational framework to seamlessly integrate 
climate predictions in models for climate sensitive infectious diseases (CSIDs). By employing 
the forecast issued in May 2022, we focussed on two specific CSID indicators: the suitability 
for malaria transmission and the suitability for Ixodes ricinus questing activity. We assessed 
the prediction skills of both the climate inputs and the indicator forecasts. The results not 
only showcased the practical application of the system but also highlighted the enhanced 
predictive skill achieved through this integration.

Until recently, the development of climate-based monitoring tools for CSIDs was largely 
confined to academic research. The implementation of these tools in decision-making 
processes face numerous obstacles, including a lack of historical and real-time data, and 
coarse spatial and temporal resolutions. Nonetheless, advancements in computational 
power and the increasing availability of reanalysis products have enhanced climate services 
for health. Within the framework of the Lancet Countdown's family of reports, a wide range of 
indicators has been introduced to monitor the long-term impacts of climate on health. The 
indicators highlighted in this report are effective for detecting trends and are flexible enough 
to transition from tracking long-term dynamics to assessing seasonal probabilities. However, 
effectively communicating this information to end users remains a challenge.

In this context, WP3 aims to develop an early warning tool that effectively communicates 
forecasts and their reliability to protect Europe against current and emerging CSID threats. 
The initial steps included developing a forecasting workflow that extracts information from 
climate models, processes it, and computes the indicators. This report showcases various 
tools used to calibrate predictions and evaluate their accuracy, providing a foundation for 
interpreting the results of these forecasts.

The CSID indicators used in this report were initially developed for tracking annual changes 
and trends, while the S2S timescale requires monthly results. This challenge was surpassed 
by defining the probability of a suitable month incorporating the inherent variability in the 
forecasting methods. The computation of this probability provided valuable information about 
the expected conditions in the near future, while also giving a first insight into the start and 
length of the suitable season within a 12-month forecast window (Figure 8).

In conclusion, the developed framework effectively addressed the challenges of monthly 
forecasting on the S2S timescale, although there were significant challenges in the skill of 
the forecasts. The observed spatial and temporal patterns underline the importance of 
tailored climate forecasts in anticipating and managing CSIDrisks. Future work will aim to 
refine these models further to improve forecasts reliability, as well as expand the suite of 
indicators covered.

5. Next steps

After developing the methodological framework for extracting and processing forecasts for 
use in computing CSID indicators, our focus has shifted toward enhancing the efficiency of 
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the code and broadening the range of indicators. Future developments will include forecasts 
for diseases such as leishmaniasis, West Nile Virus, and those transmitted by Aedes 
mosquitoes, such as dengue, Zika and Chikungunya, and rodents, such as leptospirosis and 
hantavirus. Additionally, we plan to expand our research to include more tick species like 
Ixodes persulcatus, a vector for Lyme disease and tick-borne encephalitis (TBE), and 
Hyalomma, which transmits Crimean-Congo Hemorrhagic Fever (CCHF). We are actively 
exploring new methodologies and consulting with experts in the field.

We are also expanding the range of data sources used to compute the indicators. Adopting 
a One Health approach, we aim to include factors such as the migration of hosts and 
vectors, as well as human population movements in and out of areas where diseases are 
endemic. We are also gathering case registries to validate our indicators through correlation 
analysis and statistical modelling.

Finally, with the seasonal predictions provided, we intend to enhance our visualisation tools 
to better illustrate how seasonality has evolved over time. This will involve analysing trends 
such as changes in the number of continuous months with suitable conditions in grid cells 
and shifts in the timing of peak seasons throughout the year.
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Appendix

Figure A1. climatic suitability for I. ricinus questing activity in European countries, showing maximum 
probability of the climatic suitability of any NUTS3 level region within the country and following the 
approach of merging observations, forecasts and climatology depending on their availability. FR* 
excluding FRY10 (Guadeloupe), FRY20 (Martinique), FRY30 (Guyane), FRY40 (la Réunion) and 
FRY50 (Mayotte).
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